Biological control of Tuta absoluta in Argentina and Italy: evaluation of indigenous insects as natural enemies M. G. Luna1, N. E. Sánchez1, P. C. Pereyra1, E. Nieves1, V. Savino1, E. Luft2, E. Virla2 and S. Speranza3 1Centro de Estudios Parasitológicos y de Vectores (CEPAVE) CONICET & UNLP, La Plata, Argentina; e-mail: lunam@cepave.edu.ar 2PROIMI – Biotecnologı́a, Div. Control Biológico. CONICET, Tucumán, Argentina; e-mail: evirla@gmail.com 3Department of Agriculture, Forests, Nature and Energy, University of Tuscia, Viterbo, Italy; e-mail: speranza@unitus.it By means of an international project, Argentinian and Italian researchers are carrying out joint research to study biological and ecological aspects of Tuta absoluta biological control. This paper lists indigenous natural enemies reported for T. absoluta, as well as the current results on T. absoluta egg and larval parasitoids in both countries. Parasitoid species that conformed to different guilds are shown to coexist in cropping conditions, and some show positive characteristics as potential biocontrol agents against T. absoluta by means of aug- mentative releases. Future laboratory and field evaluations of the efficacy of biological con- trol programmes in Argentina and Italy are proposed. Introduction The tomato moth Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a key pest of tomato originating from South America, present in all cropping regions of both Italy and Argentina. In Argentina it was first recorded in 1964 (Bah- amondes & Mallea, 1969). Four decades later, T. absoluta was detected in Spain (in 2006), and from this point of introduction it spread rapidly throughout the Mediterranean basin countries becoming a serious tomato pest (Desneux et al., 2010). In Italy, T. absoluta was detected in 2008 (Viggiani et al., 2009). Currently it is dispersing to other European and Middle East Asian states, and it is predicted that in a 15-year period it will reach the Pacific Asian Coast (Desneux et al., 2011). Tomato is an important horticultural product in both countries. In Argentina, it reaches 17 000 ha, mostly under open cropping although protected crops have increased con- siderably during recent decades. The main tomato produc- tion regions are: Cuyo (310 000 tonnes), Northwestern (260 000 tonnes), Northern Buenos Aires (100 000 tonnes) and Northeastern (70 000 tonnes) (Argerich, 2011). In Italy, tomato is cultivated all over the country, reaching 19 314 ha and 600 000 tonnes of production per year. Sicilia, Campania, Abruzzo, Lazio, Calabria and Sardinia are the main cultivation regions, representing 75% of Italian production. Tuta absoluta is a multivoltine species in both countries, which rapidly develops in favourable environmental condi- tions, with up to nine overlapping cycles per year in the south of Italy and 12 in Argentina (Guenaoui et al., 2010; Sannino & Espinosa, 2010a,b). Females lay 100–200 eggs on the upper part of the plant. The newly hatched larvae dig mines in the leaf parenchyma, where they reside until the fourth-instar larval stage. Pupation takes place on the plant or in the soil, sometimes protected by a silky cocoon. Tuta absoluta does not have a winter diapause. The pest attacks tomato leaves, stems and fruits, and it is considered as oligophagous because it prefers mostly solanaceous spe- cies as host plants. Moreover, it can lead to secondary infestations. The mean population reproductive rate (Ro), when fed on tomato (its preferred host), is threefold greater than on other solanaceous crops such as potato However, its ability to feed on other host plants can enhance the capacity of T. absoluta to adapt to different environmental conditions, which confers an important invasive behaviour on this pest (Pereyra & Sánchez, 2006). Tuta absoluta control in Argentina is based mostly on the use of synthetic pesticides. More than 16 neurotoxic insecticides are applied on a weekly basis, up to 14 times per growing cycle (Strassera, 2009). In this country there are also studies in progress to evaluate the use of Bacillus thuringiensis and azadirachtin-based products to be com- bined in integrated pest management (IPM), mostly targeted to preserve the whiteflies’ parasitoid Eretmocerus mundus (Cáceres et al., 2011). In Italy, chemical control is also applied heavily through weekly calendar treatments in greenhouses and open-field crops. However, IPM strategies are starting to be applied based on monitoring with phero- mone traps followed by chemical or natural pesticides treat- ments (Speranza & Sannino, 2011). Because of the concealed (within-leaf) feeding behaviour of T. absoluta larvae, chemical control may be inefficient. Thus tomato producers on both continents commonly have to increase pesticide use as the season progresses, which may lead to an increase of around 70% of total pest 260 ª 2012 The Authors. Journal compilation ª 2012 OEPP/EPPO, EPPO Bulletin 42, 260–267 Bulletin OEPP/EPPO Bulletin (2012) 42 (2), 260–267 ISSN 0250-8052. DOI: 10.1111/epp.2564 https://www.researchgate.net/publication/232747184_Tuta_absoluta_nuovo_lepidottero_segnalato_anche_in_Italia?el=1_x_8&enrichId=rgreq-165c0071-cd41-4d59-b6e9-0737249cdcef&enrichSource=Y292ZXJQYWdlOzIzNjIzMzUyOTtBUzo5ODc2ODc1ODI0NzQzNkAxNDAwNTU5NzE2MTc3 management costs (Desneux et al., 2011). This intensive use, in addition to producing adverse effects on human health and the environment, has led to the appearance of resistance in populations of South America (Salazar & Araya, 1997; Siqueira et al., 2000, 2001; Lietti et al., 2005) and Europe (Bielza, 2010). Therefore there is a need for further T. absoluta control techniques that ensure effective, inexpensive and environmentally safe management for the pest (Luna et al., 2007; Strassera, 2009; Desneux et al., 2010). Biological control based on the use of entomopha- gous insects (predators and parasitoids), which comprise the natural enemies of a pest, is an alternative technique worth development (Koul & Dhaliwal, 2002; van Lenteren, 2008). Based on the previous knowledge generated in Argentina on T. absoluta concerning its biology, ecology and control, Argentinian and Italian researchers have recently started a joint collaboration project. The aim is to study the ento- mophagous insect complex of this pest to select potential biological control agents. Potential for biological control in Argentina Biological control is a prominent tool of increasing interest to the Argentinian agronomical sector, but this technique still remains to be commercially developed for most pests. For T. absoluta, over 50 species of natural enemies are mentioned for its region of origin, including predators, par- asitoids and pathogens (Vargas, 1970; Garcı́a Roa, 1989; Consoli et al., 1998; Miranda et al., 1998; Faria et al., 2000; Colomo et al., 2002; Torres et al., 2002; Desneux et al., 2010; Luna et al., 2011; Scorsetti & López Lastra, 2011). For Argentina, a revised inventory of the main insects registered as T. absoluta natural enemies is pre- sented (Table 1). Notably, most studies have focused on parasitoid species (approximately 20 species described), and to a lesser extent on predators, although the latter are commonly present in horticultural crops (Botto et al., 1999; Polack et al., 2011). Six parasitoid guilds1, according to the parasitoid niche criteria developed by Mills (1994), were found to attack T. absoluta eggs, larvae and/or pupae. Inter- estingly, parasitoid guilds are similar to those recorded for this pest in other countries, although species can differ (Uchoa-Fernandes & Campos, 1993; Faria et al., 2000; Marchiori et al., 2004; Guedes, 2011). All of them are Hymenopteran wasps, and Tachinidae (Diptera) species have not yet been found. So far, the mirid bug Tupiocoris cucurbitaceus (Spinola) and the parasitoid wasps Dineulo- phus phtorimaeae (de Santis) (Hymenoptera: Eulophidae) and Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae) show positive traits to be considered as poten- tial candidates for biological control by means of conserva- tion and/or inundative releases (Luna et al., 2007; Sánchez et al., 2009; Luna et al., 2010; López et al., 2011). Results for parasitoids: literature review and experimental results Egg parasitoids Based on a literature review, one Aphelinidae and several Trichogrammatidae species have been reported as spontane- ously attacking this host stage in Argentina (Table 1) (Botto et al., 1999). Riquelme Virgala & Botto (2010) found that the introduced species Trichogrammatoidea bactrae Naga- raja could also be a potential natural enemy against T. absoluta through a new parasitoid–host association. In addition, more egg parasitoid species are known for T. absoluta in other South American countries (Desneux et al., 2010). To determine the current egg parasitoid complex of T. absoluta in Argentina, a study was initiated using the ‘sentinel eggs’ technique (Colazza & Bin, 1995; Koppel et al., 2009). The aim was to register natural egg parasit- ism in Northern Buenos Aires province (La Plata Horticul- tural Belt) and in Northwestern Region (Tucumán province). Bouquets of tomato leaves with cohorts of T. absoluta egg masses (24–36 h old) were placed in greenhouse and open-field crops, and also in vegetation adjacent to crops. Egg masses were exposed for 48 h and then viewed under a stereoscope to check for parasitized, healthy and lost/predated eggs. To date, Trichogramma pretiosum Riley was found parasitizing T. absoluta senti- nel eggs located in adjacent crops (maize) in N. Buenos Aires province, but was not detected in tomato crops. The authors consider that probably the cropping conditions, such as extreme climatic environment in greenhouses and/ or intensive use of pesticides, negatively affect the egg parasitoids’ host search-and-attack behaviour (Pratissoli & Parra, 2000; Lewis et al., 2003). Larval parasitoids Among the list of species attacking T. absoluta larvae reported previously (Table 1 and references therein), the en- doparasitoid P. dignus and the ectoparasitoid D. phtori- maeae are by far the main indigenous species, producing >50% of natural parasitism (Sánchez et al., 2009; Luna et al., 2010). Interestingly, although both species attack the larval stage, Luna et al. (2010) found evidence that they interact and can coexist at host densities normally recorded in the field, as they belong to different parasitoid guilds and partition their niche (host resource) (see below). Because of these characteristics, P. dignus and D. phtori- maeae were selected to evaluate their potential as biocon- trol candidates. Thus biological and ecological traits in the laboratory, as well as some aspects of the host–parasitoid 1A parasitoid guild is a group of parasitoid species that share the same parasitoid niche. A parasitoid niche is characterized by the host stage attacked, the mode of parasitism (external or internal), and the form of parasitism (continuous or protracted development). There are a total of 12 available niches for endopterygote insects as hosts (Mills, 1994). ª 2012 The Authors. Journal compilation ª 2012 OEPP/EPPO, EPPO Bulletin 42, 260–267 Biocontrol of T. absoluta in Argentina and Italy 261 https://www.researchgate.net/publication/233648925_Luna_MG_Wada_VI_Sanchez_NE_Biology_of_Dineulophus_phtorimaeae_Hymenoptera_Eulophidae_and_field_interaction_with_Pseudapanteles_dignus_Hymenoptera_Braconidae_larval_parasitoids_of_Tuta_absoluta_Lepidop?el=1_x_8&enrichId=rgreq-165c0071-cd41-4d59-b6e9-0737249cdcef&enrichSource=Y292ZXJQYWdlOzIzNjIzMzUyOTtBUzo5ODc2ODc1ODI0NzQzNkAxNDAwNTU5NzE2MTc3 interactions, in open-field and protected crops in Buenos Aires and Tucumán provinces, are currently being studied (Pereyra et al., 2010; Savino et al., 2010, 2012). Pseudapanteles dignus is a koinobiont2 endoparasitoid. It is present in open-field and protected crops (organic and conventional). It has seasonal synchronization with the host. The impact on natural host populations throughout the cropping season can reach >60%. The percentage of para- sitism is host density-independent and highly variable. This parasitoid exhibited an aggregative response to T. absoluta density at leaf scale. Pest patches of higher densities have greater risk of being parasitized than those of lower densi- ties. No preference was found among host larval instars. Total female life cycle is 36 days and adult female life span is 12.20 ± 1.68 days. The reproductive strategy would correspond to a weak synovigeny as in Jervis et al. (2008), i.e. most eggs are mature at adult emergence. The female exhibits a type I functional response, with the instantaneous attack rate greater than the intrinsic growth rate (rm) of the pest. The latter trait is considered a positive attribute for an effective biological control agent, reducing pest growth significantly, indicating potential for augmentative releases (van Lenteren, 1997). On average, a female wasp can lead to parasitism of 32 hosts. It shows promise for insect rear- ing (Luna et al., 2007; Sánchez et al., 2009; Nieves et al., 2011). Dineulophus phtorimaeae is an idiobiont ectoparasitoid. It occurs in open-field and greenhouse tomato crops, and appears to be more sensitive to pesticides than P. dignus. Table 1 List of insects as potential or detected natural enemies of T. absoluta in Argentina Order Family Species References Predators Hemiptera Miridae Tupiocoris cucurbitaceus López et al., 2011 Parasitoids Hymenoptera Aphelinidae Encarsia porteri (E) Cáceres et al., 2011 Braconidae Agathis (EL) Colomo et al., 2002; Bracon lucilaeae (EL) Cáceres et al., 2011; Colomo et al., 2002 Bracon lulesis (EL) Colomo et al., 2002 Bracon tutus (EL) Colomo et al., 2002 Chelonus (Microchelonus) (E–L) Colomo et al., 2002 Earinus spp. (EL) Colomo et al., 2002 Orgilus spp. (EL) Colomo et al., 2002 Pseudapanteles dignus (EL) Botto et al., 1999; Colomo et al., 2002; Berta & Perez, 2011; Cáceres et al., 2011; Luna et al., 2007; Puch, 2011. Encyrtidae Copidosoma (E–L) Colomo et al., 2002 Chalcididae Spilochalcis spp. (= Conura spp.) (P) Cáceres et al., 2011 Eulophidae Dineulophus phtorimaeae (LLC) Botto et al., 1999; Colomo et al., 2002; de Santis, 1983; Luna et al., 2010 Neochrysocharis formosus (EL) Luna et al., 2011 Ichneumonidae Campoplex haywardi (EL; L–P) Colomo et al., 2002 Diadegma (EL) Colomo et al., 2002 Temelucha (EL) Colomo et al., 2002; Trichogrammatidae Trichogramma nerudai, T. pretisoum, T. rojasi, Trichogrammatoidea bactrae* (E) Botto et al., 1999; Cáceres et al., 2011; Colomo et al., 2002. *Introduced species. In parentheses, parasitoid species are classified into guilds according to Mills (1994): E, egg; E–L, egg–larval; EL, larval endoparasitoid; LLC, late larval ectoparasitoid; L–P, larval–pupal; P, pupal. 2Koinobiont: a parasitoid life-history strategy in which the host contin- ues developing more or less normally for a period following the para- sitization event; cf. idiobiont: a parasitoid that does not allow its host to develop any further after parasitization (Askew & Shaw, 1986) ª 2012 The Authors. Journal compilation ª 2012 OEPP/EPPO, EPPO Bulletin 42, 260–267 262 M. G. Luna et al. https://www.researchgate.net/publication/267527836_Ovipositional_strategy_of_Dineulophus_phtorimaeae_de_Santis_Hymenoptera_Eulophidae_a_natural_enemy_of_the_tomato_moth_Tuta_absoluta_Meyrick_Lepidoptera_Gelechiidae?el=1_x_8&enrichId=rgreq-165c0071-cd41-4d59-b6e9-0737249cdcef&enrichSource=Y292ZXJQYWdlOzIzNjIzMzUyOTtBUzo5ODc2ODc1ODI0NzQzNkAxNDAwNTU5NzE2MTc3 https://www.researchgate.net/publication/51254461_Luna_MG_Wada_VI_LaSalle_J_Sanchez_NE_Neochrysocharis_formosa_Westwood_Hymenoptera_Eulophidae_a_newly_recorded_parasitoid_of_the_tomato_moth_Tuta_absoluta_Meyrick_Lepidoptera_Gelechiidae_in_Argentina_N?el=1_x_8&enrichId=rgreq-165c0071-cd41-4d59-b6e9-0737249cdcef&enrichSource=Y292ZXJQYWdlOzIzNjIzMzUyOTtBUzo5ODc2ODc1ODI0NzQzNkAxNDAwNTU5NzE2MTc3 It has a later seasonal synchronization with T. absoluta than P. dignus. It practises lethal non-concurrent host feeding, and attacks both healthy and previously P. dignus-parasit- ized hosts. The percentage of parasitism is host density- independent (functional response type I). As is the case for P. dignus, it has an aggregative response to host density. It prefers the host third-larval instar. Pre-imaginal develop- mental time is 11.17 ± 0.6 days, and adult female life span is 11.73 ± 0.92 days. It shows an extremely synovenic reproductive strategy (type III, Jervis et al., 2008), indicat- ing that females emerge without mature eggs. In contrast to P. dignus, the parasitoid instantaneous attack rate is much lower than the intrinsic growth rate (rm) of the pest. This ectoparasitoid produces a total mean mortality (by host feeding and parasitism) of 3.61 ± 0.19 hosts per female (Luna et al., 2010; Savino et al., 2012). Potential for biological control in Italy Unlike the information available for Argentina, only limited data is available about native predators and parasitoids attacking T. absoluta in Italy, because of its recent introduc- tion. A first inventory of the main insects detected as natural enemies of T. absoluta is presented in Table 2. Three families of Hemiptera have been detected as T. absoluta predators. Macrolophus pygmaeus (Herrich-Schäffer) and Table 2 List of insects as potential or detected natural enemies of T. absoluta in Italy Order Family Species References Predators Hemiptera Anthocoridae Orius spp. Sannino & Espinosa, 2010b Miridae Macrolophus pygmaeus Nannini, 2009; Sannino & Espinosa, 2010b; Nannini et al., 2011; Fois et al., 2011a. Macrolophus fuliginosus Sannino & Espinosa, 2010b Macrolophus caliginosus Delrio et al., 2009 Dicyphus spp. Sannino & Espinosa, 2010b Dicyphus errans Nesidiocoris tenuis Tavella et al., 2011; Zappalà et al., 2011a,b,c; Sannino & Espinosa, 2010b; Fois et al., 2011a,b; Nannini et al., 2011; Rizzo et al., 2011. Nabidae Nabis spp. Sannino & Espinosa, 2010b Parasitoids Hymenoptera Braconidae Bracon sp. (LLC–EL) Zappalà et al., 2011c Bracon nigricans (LLC) Zappalà et al., 2011a,b,c Bracon osculator (LLC) Zappalà et al., 2011c Agathis fuscipennis (EL) Loni et al., 2011 Ichneumonidae Diadegma spp. (EL) Sannino & Espinosa, 2010b Diadegma pulchripes (EL) Zappalà et al., 2011c Eulophidae Closterocerus formosus (EL) Zappalà et al., 2011c Chrysocharis pentheus (EL) Rizzo et al., 2011 Diglyphus crassinervis (EL) Rizzo et al., 2011 Hemiptarsenus spp. (L) Sannino & Espinosa, 2010b Necremnus spp. (LLC) Sannino & Espinosa, 2010b; Fois et al., 2011b; Tavella et al., 2011; Zappalà et al., 2011c Necremnus artynes (LLC) Ferracini et al., 2011; Rizzo et al., 2011 Necrenmus tidius (LLC) Ferracini et al., 2011 Pnigallio spp. (LLC) Sannino & Espinosa, 2010b Pnigalio cristatus (LLC) Zappalà et al., 2011c Pnigalio soemius (LLC) Zappalà et al., 2011c Trichogrammatidae Trichogramma spp.(E) Polaszek et al., 2010; Sannino & Espinosa, 2010b In parentheses, parasitoid species are classified into guilds according to Mills (1994): E, egg; EL, larval endoparasitoid; LLC, late larval ectoparasitoid; L, larval. ª 2012 The Authors. Journal compilation ª 2012 OEPP/EPPO, EPPO Bulletin 42, 260–267 Biocontrol of T. absoluta in Argentina and Italy 263 https://www.researchgate.net/publication/267527836_Ovipositional_strategy_of_Dineulophus_phtorimaeae_de_Santis_Hymenoptera_Eulophidae_a_natural_enemy_of_the_tomato_moth_Tuta_absoluta_Meyrick_Lepidoptera_Gelechiidae?el=1_x_8&enrichId=rgreq-165c0071-cd41-4d59-b6e9-0737249cdcef&enrichSource=Y292ZXJQYWdlOzIzNjIzMzUyOTtBUzo5ODc2ODc1ODI0NzQzNkAxNDAwNTU5NzE2MTc3 https://www.researchgate.net/publication/233648925_Luna_MG_Wada_VI_Sanchez_NE_Biology_of_Dineulophus_phtorimaeae_Hymenoptera_Eulophidae_and_field_interaction_with_Pseudapanteles_dignus_Hymenoptera_Braconidae_larval_parasitoids_of_Tuta_absoluta_Lepidop?el=1_x_8&enrichId=rgreq-165c0071-cd41-4d59-b6e9-0737249cdcef&enrichSource=Y292ZXJQYWdlOzIzNjIzMzUyOTtBUzo5ODc2ODc1ODI0NzQzNkAxNDAwNTU5NzE2MTc3 https://www.researchgate.net/publication/235985083_Efficacy_of_sulphur_on_Tuta_absoluta_and_its_side_effects_on_the_predator_Nesidiocoris_tenuis?el=1_x_8&enrichId=rgreq-165c0071-cd41-4d59-b6e9-0737249cdcef&enrichSource=Y292ZXJQYWdlOzIzNjIzMzUyOTtBUzo5ODc2ODc1ODI0NzQzNkAxNDAwNTU5NzE2MTc3 Nesidiocoris tenuis (Reuter) have been tested in the laboratory and in greenhouses as biological control agents of T. absoluta during the past 3 years (Fois et al., 2011a,b; Nannini et al., 2011). Sannino & Espinosa (2010b) detected in Campania crops the species Nabis predating T. absoluta larvae and pupae, and Macrolopus, N. tenuis and Orius feeding on eggs and early larval instars of the pest. Italian native Hymenoptera are starting to be found in T. absoluta control. The main family is Eulophidae, with more than seven species parasitizing T. absoluta larvae (Ferracini et al., 2011; Rizzo et al., 2011; Sannino & Espinosa, 2010b; Zap- palà et al., 2011a,c). Native Diadegma pulchripes (Kokujev) (Hym., Ichneumonidae), Necremnus sp. (Hym., Eulophydae) and Bracon sp (Hym., Braconidae) have been reared in the laboratory to test their potential as augmentative biological control agents (Zappalà et al., 2011c). Zappalà et al. (2011c) showed that Bracon sp. prefers late larval instars (third and fourth) as hosts, with an adult life span of 18.37 ± 1.93 days. Moreover, it can inflict !80% of mortality on the pest through parasitism and host feeding. Further studies aimed to find parasitoids of T. absoluta immature stages in the Lazio region and compare these with parasitoid complexes in other Italian regions. Particu- larly for egg parasitoids, the ‘sentinel eggs’ technique is used to compare this parasitoid guild in Italy and Argentina (Colazza & Bin, 1995; Koppel et al., 2009). Concluding remarks Future biological control of T. absoluta in Italy is positively related to the research experience carried out in Argentina and vice versa. By increasing the scientific knowledge of this pest, both countries will obtain mutual benefits. Currently, results indicate that there exists a taxonomically diverse community of natural enemies of T. absoluta, spontaneously present in tomato crops in Argentina and Italy. Preliminary studies in Italy show that interactions among native predators and parasitoids and T. absoluta are becoming established. Several authors state that the future of T. absoluta control in Italy relies on augmentative biological control (Ferracini et al., 2011; Fois et al., 2011a; Nannini et al., 2011; Rizzo et al., 2011; Zappalà et al., 2011b,c). In addition to economical benefits, the use of biological control agents preserves the environment, with low ecological risks for the gene pool of organisms already present in the tomato agro-ecosystem. Commercial augmentative biological control is a well developed technique, used effectively in Europe (van Lenteren, 2011). The industry has dozens of species available to be released for many crops, and is interested in widening the market to T. absoluta control. Concerning future directions in Argentina, the focus will be on continuing the field evaluation of P. dignus effective- ness to control T. absoluta through augmentative releases. In addition, the authors plan to search for P. dignus alterna- tive hosts in the field, as well as to investigate the feasibil- ity of host–parasitoid system mass rearing. In addition, D. pthorimaeae deserves to be explored further in order to develop possible tactics for conservation biological control. Other interesting questions regarding multiple species inter- actions is to elucidate whether P. dignus or D. phtorimaeae will outcompete one anther, or whether both can coexist under certain field conditions, as evidence suggests (Luna et al., 2010; Savino, 2009). Information on other T. absoluta mortality factors, such as those inflicted by oophagous preda- tors and parasitoids, will contribute to better knowledge of the complex interactions in the tomato agro-ecosystem, to be integrated in IPM. Finally, knowledge should be gained from the Italian experience on the improvement of commercial biological control, a pest management tool commonly used in horticultural crops in Europe, but of very limited development in Argentina. There is increasing interest by the Argentinian agricultural sector in moving towards these techniques for pest control. However, Argen- tina lacks industrial production of biological control agents, and to date only a few imported species, such as Orius insidiosus and Neoseiulus californicus strains produced in Europe, are available, at high cost, to control T. absoluta and whiteflies (Cáceres et al., 2011). With the development of native insects as biocontrol agents, built on a thorough scientific basis (Wajnberg et al., 2001), local growers would benefit from less expensive, more efficient and envi- ronmentally safe entomophagous species, avoiding non-tar- get effects on native communities. Acknowledgements This paper was funded by a joint research cooperation grant from the National Ministry of Science and Technology of Argentina and the Ministry of External Affairs of Italy (IT/ 10/08). Lutte biologique contre Tuta absoluta en Argentine et en Italie: évaluation des insectes indigènes en tant qu’auxiliaires Par le biais d’un projet international, des chercheurs argentins et italiens ont commencé des recherches conjointes afin d’étudier les aspects biologiques et écologiques de la lutte biologique contre Tuta absoluta. Cet article présente une liste exhaustive des ennemis naturels indigènes signalés pour T. absoluta, ainsi que les résultats actuels concernant les parasitoı̈des des œufs et des larves de T. absoluta dans ces deux pays. Il a été montré que des espèces de parasitoı̈des faisant partie de différents groupes écologiques coexistent en culture, et que certains d’entre eux présentent des caractéristiques positives pour être éventuellement utilisés comme agents de lutte biologique contre T. absoluta par le biais de lâchers inondatifs. Il est proposé de continuer les recherches en évaluant au laboratoire et sur le terrain des programmes efficaces de lutte biologique en Argentine et en Italie. ª 2012 The Authors. Journal compilation ª 2012 OEPP/EPPO, EPPO Bulletin 42, 260–267 264 M. G. Luna et al. https://www.researchgate.net/publication/230695298_Evaluating_Indirect_Ecological_Effects_Of_Biological_Control?el=1_x_8&enrichId=rgreq-165c0071-cd41-4d59-b6e9-0737249cdcef&enrichSource=Y292ZXJQYWdlOzIzNjIzMzUyOTtBUzo5ODc2ODc1ODI0NzQzNkAxNDAwNTU5NzE2MTc3 https://www.researchgate.net/publication/24354779_Survey_of_Stink_Bug_Hemiptera_Pentatomidae_Egg_Parasitoids_in_Wheat_Soybean_and_Vegetable_Crops_in_Southeast_Virginia?el=1_x_8&enrichId=rgreq-165c0071-cd41-4d59-b6e9-0737249cdcef&enrichSource=Y292ZXJQYWdlOzIzNjIzMzUyOTtBUzo5ODc2ODc1ODI0NzQzNkAxNDAwNTU5NzE2MTc3 References Askew RR & Shaw MR (1986) Parasitoid communities: their size, structure and development. In Insect Parasitoids (Ed. Waage J & Greathead D), pp. 225–264. Academia Press, London (GB). Argerich C (2011) La importancia del cultivo de tomate en Argentina. Libro de Resúmenes del Taller: La polilla del tomate en la Argentina: Estado actual del conocimiento y prospectiva para un manejo integrado de plagas. 7 y 8 de noviembre de 2011, FCNyM, UNLP, p. 4 (in Spanish). Bahamondes LA & Mallea AR (1969) Biologı́a en Mendoza de Scrobipalpula absoluta (Meyrick) Povolny (Lepidoptera: Gelechiidae), especie nueva para la República Argentina. Revista de Facultad de Ciencias Agrárias, UNC (Argentina) 15, 96–104 (in Spanish). Berta CD & Perez EC (2011) Una alternativa biológica para el control de la ‘polilla del tomate’. Libro de Resúmenes del Taller: La polilla del tomate en la Argentina: Estado actual del conocimiento y prospectiva para un manejo integrado de plagas. 7 y 8 de noviembre de 2011, FCNyM, UNLP, p. 5 (in Spanish). Bielza P (2010) La resistencia a insecticidas en Tuta absoluta. Phytoma España 217, 103–106 (in Spanish). Botto EN, Ceriani SA, López SN, Saini ED, Cédola CV, Segade G & Viscarret MM (1999) Control biológico de plagas hortı́colas en ambientes protegidos. La experiencia de Argentina hasta el presente. RIA 29, 83–98 (in Spanish). Cáceres S, Aguirre A, Miño V & Almonacid R (2011) Lı́neas de trabajo para el manejo integrado de la polilla del tomate en Corrientes. Libro de Resúmenes del Taller: La polilla del tomate en la Argentina: Estado actual del conocimiento y prospectiva para un manejo integrado de plagas. 7 y 8 de noviembre de 2011, FCNyM, UNLP, p. 7 (in Spanish). Colazza S & Bin F (1995) Efficciency of Trissolcus basalis (Hymenoptera: Scelionidae) as an egg parasitoid of Nezara viridula (Heteroptera: Pentatomidae) in central Italy. Environmental Entomology 24, 1703–1707. Colomo MV, Berta DC & Chocobar MJ (2002) El complejo de himenópteros parasitoides que atacan a la ‘polilla del tomate’ Tuta absoluta (Lepidoptera: Gelechiidae) en la Argentina. Acta Zoologica Lilloana 46, 81–92 (in Spanish). Consoli FL, Parra JRP & Hassan SA (1998) Side effects of insecticides used in tomato fields on the egg parasitoid Trichogramma pretiosum Riley (Hym, Trichogrammatidae), a natural enemy of Tuta absoluta (Meyrick) (Lep., Gelechiidae). Journal of Applied Entomology 122, 43–47. Delrio G, Ramassini W & Foxi C (2009) Tuta absoluta (Meyrick) nuovo nemico del pomodoro. Giornata studio. Tuta absoluta (Meyrick) Povolny. Un nuovo pericolo per la coltivazione del pomodoro. Regione autonoma della Sardegna. UTA, 4 Giugno 2009. http://www.sardegnaagricoltura.it/documenti/14_43_20090716120647. pdf [accessed on 13 January 2012]. de Santis L (1983) Un nuevo género y dos nuevas especies de Eulófidos Neotropicales (Insecta, Hymenoptera). Revista Peruana de Entomologia 26, 1–4 (in Spanish). Desneux N, Wajnberg E, Wyckhuys K, Burgio G, Arpaia S, Narváez- Vasquez C, González-Cabrera J, Catalán-Ruescas D, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T & Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 83, 197–215. Desneux N, Luna MG, Guillemaud T & Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. Journal of Pest Science 84(4), 403–408. Faria C, Torres JB & Farias AM (2000) Resposta funtional de Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) parasitando ovos de Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae): efeito da idade do hospedeiro. Anais da Sociedade Entomológica 29, 85–93 (in Portuguese). Ferracini C, Ingegno BL, Navone P, Mosti M, Tavella L & Alma A (2011) Indagini preliminari su adattamento ed efficacia di parassitoidi indigeni nella lotta a Tuta absoluta. In: Proc. XXIII Congresso Nazionale Italiano di Entomologia, pp. 336. Genova (IT) 13–16 June 2011. Fois F, Porcu M, Sau S, Carrusci P, Deiana AM & Nannini M (2011a) Valutazioni preliminari del predatore Macrolophus pygmaeus (Hermiptera, Miridae) nel contenimento di Tuta absoluta (Lepidoptera, Gelechiidae). In: Proc. XXIII Congresso Nazionale Italiano di Entomologia, pp. 337, Genova (IT) 13–16 June 2011. Fois F, Porcu M, Sau S, Carrusci P, Deiana AM & Nannini M (2011b) Osservazioni sulla dinamica di popolazione della tignola del pomodoro Tuta absoluta (Lepidoptera, Gelechiidae) in coltura protetta. In: Proc. XXIII Congresso Nazionale Italiano di Entomologia, pp. 221. Genova 13–16 June 2011. Garcı́a Roa F (1989) Plagas del tomate y su manejo. ICA Palmira, Colombia (US) (in Spanish). Guenaoui Y, Bensaad F & Ouezzani K (2010) First experiences in managing tomato leaf miner Tuta absoluta Meyrick (Lepidoptera, Gelechiidae) in the Northwest area of the country. Preliminary studies in biological control by use of indigenous natural enemies. Phytoma España, 217, 112–113. Guedes R (2011) Tuta absoluta in South America: pest status, management and insecticide resistance (Brazil). Abstracts Book EPPO/IOBC/FAO/NEPPO Joint International Symposium on management of Tuta absoluta (tomato borer, Lepidoptera: Gelechiidae). Agadir, Morocco, November 16–18, 2011. Jervis MA, Ellers J & Harvey JA (2008) Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annual Review of Entomology 53, 361–385. Koppel AL, Herbert DA, Kuhar JrTP & Kamminga K (2009) Survey of stink bug (Hemiptera: Pentatomidae) egg parasitoids in wheat, soybean, and vegetable crops in Southeast Virginia. Environmental Entomology 38(2), 375–379. ª 2012 The Authors. Journal compilation ª 2012 OEPP/EPPO, EPPO Bulletin 42, 260–267 Biocontrol of T. absoluta in Argentina and Italy 265 Koul O & Dhaliwal GS (2002) Microbial Biopesticides. Taylor and Francis Inc, London (GB). Lewis WJ, Vet LEM, Tumlimson JH, van Lenteren JC & Papaj DR (2003) Variations in natural enemy foraging behavior: essential element of a sound biological control theory. In: Quality Control and Production of Biological Control Agents. (Ed. van Lenteren JC), pp: 41–58. CABI Publishing, Wallington (GB). Lietti MM, Botto E & Alzogaray RA (2005) Insecticide resistance in argentine populations of Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae). Neotropical Entomology 34(1), 113–119. Loni A, Rossi E & van Achterberg K (2011) First report of Agathis fuscipennis in Europe as parasitoid of the tomato leafminer Tuta absoluta. Bull Insectol 64(1), 115–117. López SN, Cagnotti C & Andorno A (2011) Tupiocoris cucurbitaceus: agente potencial de control de Tuta absoluta. Libro de Resúmenes del Taller: La polilla del tomate en la Argentina: Estado actual del conocimiento y prospectiva para un manejo integrado de plagas. 7 y 8 de noviembre de 2011, FCNyM, UNLP, p. 28 (in Spanish). Luna MG,Sánchez NE & Pereyra PC (2007) Parasitism of Tuta absoluta (Lepidoptera: Gelechiidae) by Pseudapanteles dignus (Hymenoptera: Braconidae) under Laboratory Conditions. Environmental Entomology 36(4), 887–893. Luna MG, Wada V & Sánchez NE (2010) Biology of Dineulophus phtorimaeae (Hymenoptera: Eulophidae), and field interaction with Pseudapanteles dignus (Hymenoptera: Braconidae), larval parasitoids of Tuta absoluta (Lepidoptera: Gelechiidae) in tomato. Ann Entomol Soc Amer 106(6), 936–942. Luna MG, Wada V, LaSalle J & Sánchez NE (2011) Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae), a newly recorded parasitoid of the tomato moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), in Argentina. Neotropical Entomology 40, 412–414. Marchiori CH, Silva CG & Lobo AP (2004) Parasitoids of Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) collected on tomato plants in Lavras, State of Minas Gerais, Brazil. Braz J Biol 64, 551–552. Mills NJ (1994) Parasitoid guilds: defining the structure of the parasitoid communities of endopterygote hosts. Environmental Entomology 23(5), 1066–1083. Miranda MM, Picanço M, Zanuncio JC & Guedes RNC (1998) Ecological life table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol Science Technology 8,597–606. Nannini M (2009) Preliminary evaluation of Macrolophus pygmaeus potential for the control of Tuta absoluta. IOBC/WPRS Bull 49, 215– 218. Nannini M, Atzori F, Murgia G, Pisci R & Sanna F (2011) Use of predatory mirids for the control of the tomato borer Tuta absoluta (Meyrick) in Sardinian greenhouse tomatoes. Proc. EPPO/IOBC/ FAO/NEPPO Joint International Symposium on management of Tuta absoluta (Tomato borer), pp. 54. Agadir (MA), November 16–18 2011. Nieves EL, Sánchez NE & Pereyra PC (2011) Aspectos de la ecologı́a poblacional del endoparasitoide larval Pseudapanteles dignus. Libro de Resúmenes del Taller: La polilla del tomate en la Argentina: Estado actual del conocimiento y prospectiva para un manejo integrado de plagas. 7 y 8 de noviembre de 2011, FCNyM, UNLP, p. 17 (in Spanish). Pereyra PC & Sánchez NM (2006) Effect of two solanaceous host plants on development and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera, Gelechiidae). Neotropical Entomology 35(5), 671–676. Pereyra PC, Luna MG, Nieves E & Sánchez NE (2010) Spatial Parasitism Patterns of Two Parasitoids of Tuta absoluta (Lepidoptera: Gelechiidae): the Ectoparasitoid Dineulophus phtorimaeae and the Endoparasitoid Pseudapanteles dignus (Hymenoptera: Eulophidae, Braconidae), in Tomato Crops. Joint IOBC – Nearctic and Neotropic Regional Sections Conference Biocontrol in the Americas – Past, Present and Future, May 11–13, 2010. Ontario (CA). Polack LA, Pereyra PC & Sarandón SJ (2011) Control biológico de la polilla del tomate, Tuta absoluta (Lepidoptera: Gelechiidae) en invernáculos con flores asociadas en el noreste de la provincia de Buenos Aires, Argentina. Seminario Internacional de Sanidad Agropecuaria. Reunión Conjunta de la International Organization for Biological Control. Mayo 3-6 2011, La Habana (CU) (in Spanish). Polaszek A, Rugman-Jones PF, Stouthammer R, Hernandez-Suarez E, Cabello T & del Pino Perez M (2010) Molecular and morphological diagnoses of five species of Trichogramma: biological control agents of Chrysodeixis chalcites (Lepidoptera: Noctuidae) and Tuta absoluta (Lepidoptera: Gelechiidae) in the Canary Islands. BioControl 57(1), 21–35. DOI 10.1007/s10526-011-9361-y. Pratissoli D & Parra JRP (2000) Fertility life table of Trichogramma pretiosum (Hym., Trichogrammatidae) in eggs of Tuta absoluta and Phthorimea operculella (Lep., Gelechiidae) at different temperatures. Journal of Applied Entomology 124, 339–342. Puch L (2011) Presencia de Pseudapanteles dignus (Mues) en larvas de la polilla del tomate (Tuta absoluta) en la localidad de Yuto, prov. de Jujuy. Libro de Resúmenes del Taller: La polilla del tomate en Argentina: estado actual del conocimiento y prostectiva para un manejo integrado de plagas. 7 y 8 de noviembre de 2011, FCNyM, UNLP, p. 23 (in Spanish). Riquelme Virgala MB & Botto EN (2010) Biological studies on Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae), egg parasitoid of Tuta absoluta Meyrick (Lepidoptera: gelechiidae). Neotropical Entomology 39, 612–617. Rizzo MC, Margiotta V & Caleca V (2011) Necremnus artynes parassitoide di Tuta absoluta su pomodoro, melanzana e Solanum nugrum in serra a conduzione biologica. In: Proc. XXIII Congresso Nazionale Italiano di Entomologia, pp. 357. Genova (IT) 13–16 June 2011. Salazar ER & Araya JE (1997) Detección de resistencia a insecticidas en la polilla del tomate. Simiente 67, 8–22. Sánchez NE, Pereyra PC & Luna MG (2009) Spatial patterns of parasitism of the solitary parasitoid Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae) on the tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Environmental Entomology 38, 365–374. Sannino L & Espinosa B (2010a) Incidenza di Tuta absoluta sulla produzione di pomodoro. L’informatore Agrario 10, 37–40. Sannino L & Espinosa B (2010b) Tuta absoluta: guida alla conoscenza e recenti acquisizioni per una corretta difesa. L’Informatore Agrario 46, (Suppl. 1) 113. Savino V (2009) Biologı́a reproductiva del ectoparasitoide Dineulophus phtorimaeae de Santis y su interacción con el endoparasitoide Pseudapantales dignus (Muesebeck). Implicancias para el control biológico de la polilla del tomate Tuta absoluta (Meyrick). Libro de Resúmenes de la III Reunión Argentina de Parasitoidólogos (RAP), Buenos Aires, Argentina, 26 al 28 de noviembre de 2009, p. 63 (in Spanish). Savino V, Luna MG, Coviella CE & Sánchez NE (2010) Field interaction between Two Tuta absoluta Parasitoids of Different Guilds in Tomato Crops of La Plata and Tucumán, Argentina. Joint IOBC – Nearctic and Neotropic Regional Sections Conference Biocontrol in the Americas – Past, Present and Future, May 11–13, 2010, Ontario (CA). Savino V, Coviella CE & Luna MG (2012) Reproductive biology of Dineulophus phtorimaeae de Santis (Hymenoptera: Eulophidae), a ª 2012 The Authors. Journal compilation ª 2012 OEPP/EPPO, EPPO Bulletin 42, 260–267 266 M. G. Luna et al. natural enemy of the tomato moth Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Journal of Insect Science (in press). Scorsetti AC & López Lastra CC (2011) Registro de hongos entomopatógenos infectando a Tuta absoluta. Libro de Resúmenes del Taller: La polilla del tomate en la Argentina: Estado actual del conocimiento y prospectiva para un manejo integrado de plagas. 7 y 8 de noviembre de 2011, FCNyM, UNLP (in Spanish). Siqueira HA, Guedes RN & Picanço MC (2000) Insecticide resistance in populations of Tuta absoluta (Lepidoptera:Gelechiidae). Agricultural and Forest Entomology. 2, 147–153. Siqueira HA, Guedes RN, Fragoso DB & Magalhães LC (2001) Abamectin resistance and synergism in brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). International Journal of Pest Management 47, 247–251. Speranza S & Sannino L (2012) The current status of Tuta absoluta in Italy. Bulletin OEPP (in press). Strassera ME (2009) Análisis de la sustentabilidad de tres alternativas de manejo de plagas en tomate bajo cubierta en el Cinturón Hortı́cola Platense (Analysis of sustainability among three pest management alternatives in greenhouse tomato at La Plata Horticultural Belt, Buenos Aires, Argentina). Master Thesis, Fac. Cs Agrarias y Forestales, UNLP, La Plata, Argentine (in Spanish). 172 pp. Tavella L, Ingegno BL, Ferracini C, Navone P, Mosti M & Alma A (2011) Biological control of Tuta absoluta (Meyrick) by native natural enemies in Italy. Proc. EPPO/IOBC/FAO/NEPPO Joint International Symposium on management of Tuta absoluta (Tomato borer), pp. 52. Agadir (MA), November 16–18 2011. Torres JB, Evangelista WS, Barras R & Guedes RNC (2002) Dispersal of Podisus nigrispinus (Het., Pentatomidae) nymphs preying on tomato leafminer: effect of predator release time, density and satiation level. Journal of Applied Entomology 126, 326–333. Uchoa-Fernandes MA & Campos WG (1993) Parasitoides de larvas e pupas da traca do tomateiro, Scrobipalpuloides absoluta (Meyrick, 1917) (Lepidoptera, Gelechiidae). Revista Brasileira de Entomologia 37, 399–402 (in Portuguese). van Lenteren JC (1997) Parasitoids in the greenhouse: successes with seasonal inoculative release systems. In: Insect Parasitoids. (Ed. Waage JK & Greathead DJ.), pp. 342–374. Academic Press, London (GB). van Lenteren J (2008) IOBC Internet Book of Biological Control. Version 5. Available online, http://www.iobc-global.org/downlaod/ IOBC%20InternetBookBiCo Version 5 January 2008. pdf)[accessed on 13 January 2012]. van Lenteren JC (2011) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57(1), 1–20. DOI 10.1007/s10526-011-9395-1. Vargas HC (1970) Observaciones sobre la biologı́a y enemigos naturales de la polilla del tomate, Gnorimoschema absoluta (Meyrick) (Lepidoptera: Gelechiidae). Idesia 1, 75–110 (in Spanish). Viggiani G, Filella F, Delrio G, Ramassini W & Foxi C (2009) Tuta absoluta, nuovo lepidottero segnalato anche in Italia. L’Informatore Agrario 65(2), 66–67. Wajnberg E, Scott JK & Quimby PC (2001) Evaluating indirect ecological effects of biological control. CABI Publishing, Wallingford (GB). 288p. Zappalà L, Siscaro G, Biondi A, Mollá O, González-Cabrera J & Urbaneja A (2011a) Efficacy of sulphur on Tuta absoluta and its side effects on the predator Nesidiocoris tenuis. Journal of Applied Entomology 136(6), 401–409. DOI: 10.1111/j.1439-0418.2011.01662.x Zappalà L, Biondi A, Siscaro G, Tropea Garzia G, van Achterberg K & Desneux N (2011b) Adaptation of indigenous parasitoids to the invasive tomato pest Tuta absoluta in Italy: biology and behaviour of the braconid wasp Bracon nigrican. Proc. EPPO/IOBC/FAO/NEPPO Joint International Symposium on management of Tuta absoluta (Tomato borer), pp. 29–30. Agadir (MA), November 16–18 2011. Zappalà L, Biondi G, Tropea Garzia G & Siscaro G (2011c) Studi sui parassitoidi indigeni di Tuta absoluta in Sicilia. Proc. XXIII Congresso Nazionale Italiano di Entomologia, pp. 335. Genova (IT) 13–16 June 2011. ª 2012 The Authors. Journal compilation ª 2012 OEPP/EPPO, EPPO Bulletin 42, 260–267 Biocontrol of T. absoluta in Argentina and Italy 267